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The Korteweg-de Vries (KdV) equation is tested experimentally as a model for 
moderate amplitude waves propagating in one direction in relatively shallow 
water of uniform depth. For a wide range of initial data, comparisons are made 
between the asymptotic wave forms observed and those predicted by the theory 
in terms of the number of solitons that evolve, the amplitude of the leading 
soliton, the asymptotic shape of the wave and other qualitative features. The 
KdV equation is found to predict accurately the number of evolving solitons and 
their shapes for initial data whose asymptotic characteristics develop in the test 
section of the wave tank. The accuracy of the leading-soliton amplitudes com- 
puted by the KdV equation could not be conclusively tested owing to the viscous 
decay of the measured wave amplitudes; however, a procedure is presented for 
estimating the decay in amplitude of the leading wave. Computations suggest 
that the KdV equation predicts the amplitude of the leading soliton to within the 
expected error due to viscosity (12 yo) when the non-decayed amplitudes are less 
than about a quarter of the water depth. Indeed, agreement to within about 20 yo 
is observed over the entire range of experiments examined, including those with 
initial data for which the non-decayed amplitudes of the leading soliton exceed 
half the fluid depth. 

1. Introduction 

The equation f 7 + 6ffT +fi, = 0 (1) 

was derived by Korteweg & de Vries (1895) to describe the propagation in one 
direction of long water waves of moderate amplitude in shallow water. A method 
of solving (1)  as an initial-value problem was discovered by Gardner et al. (1967) 
and requires that the initial data satisfy the following conditions: 

and 
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The outstanding feature of this model is that any initial data satisfying (2) 
and (3) finally evolve into a finite set of stable positive waves, called solitons 
(Zabusky & Kruskal 1965), which are followed by a dispersive train of oscillatory 
waves (tail). The parameters required to describe completely this asymptotic 
solution can be obtained directly from the initial data; hence, a step-by-step 
integration of the differential equation can be avoided. Methods of determining 
this asymptotic solution were discussed in part 1 of this study (Segur 1973). 

The purpose of part 2 is to examine the validity of ( 1 )  as a model equation for 
water waves by comparing the observed evolution of waves in a long tank of 
uniform depth with the asymptotic behaviour predicted by (1). Comparisons 
between experiment and theory are made over a wide range of initial data; 
features of the asymptotic wave behaviour such as the shape of the final wave 
form, the number of solitons that evolve and the amplitude of the leading soliton 
are examined quantitatively. Qualitative comparisons are also made for certain 
general features of the asymptotic solution. The method of wave generation in 
the laboratory is similar to the generation of tsunamis in the ocean by the vertical 
deformation of the sea bed; hence, the results of this study may be particularly 
relevant to the engineering problem of tsunami propagation. 

Comparisons of the Korteweg-de Vries equation with experiments have also 
been made by Zabusky & Galvin (1971) for shallow-water waves and by 
Hershkowitz, Romesser & Montgomery (1972) for ion acoustic waves in a plasma. 
The effect of each of these studies was to establish the existence of solitons as an 
essential ingredient in the description of long waves of moderate amplitude 
propagating in their respective media. The present study seeks to test the 
ability of the KdV model to predict quantitatively the asymptotic form of the 
wave that evolves from arbitrary initial conditions. 

2. Review of the theory 
Consider an inviscid fluid of constant density which rests on a horizontal and 

impermeable bed of infinite lateral extent as shown in figure 1. The fluid is subject 
to a vertical gravitational force g and possesses a free surface along which the 
pressure is constant and surface-energy effects are negligible. Required are the 
two-dimensional and irrotational motions which are bounded everywhere and 
evolve from a given initial distribution of velocities and free-surface deformation, 
i.e., the classical water-wave problem. To derive the Korteweg-de Vries equation 
from the governing equations of this problem the following assumptions are 
necessary: (i) long waves for which the square of the ratio of the water depth h to 
a characteristic horizontal length scale I is small, i.e., (h/Z)2 < 1, (ii) small ampli- 
tude waves for which the ratio of a typical wave amplitude Iyol to the water 
depth h is small, i.e. lyol/h 4 1, and (iii) that these two parameters are approxi- 
mately equal, i.e., E = IrloI/h = O[(h/Z)2] 4 1. These assumptions have been used 
by many authors (see, for example, Korteweg & de Vries 1895; Benney & Luke 
1964) to derive (1). A t  the lowest order in e the governing equations yield the 
linearized theory for long waves: 

yt+qy,+huz = 0, u,+qu,+gy, = 0, 2, = -(y+h)u,, (4) 
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FIGURE I .  Definition sketch of co-ordinate system. 

where q is the (constant) translational velocity of the observer. For the present 
development the translational velocity may be taken as zero; the well-known 
solution of (4) then becomes 

1 (5) 
9 ( x ; t )  = F,(Z-(gh)*t) +F2(z+(ghPt), 

u (x ;  t )  = (g/h)t [Fl(X - ( g W )  - F2(x + (gh)*t)l. 

At this order an arbitrary initial disturbance decomposes into two sets of waves 
travelling in opposite directions with a speed (gh)t; these waves propagate 
without change of form and do not interact. 

At the next order of approximation restrictions on the functions Fl and F2 are 
necessary in order to maintain the validity of the expansion procedure; equations 
governing the slow evolution of these waves as they interact are developed. The 
restrictions on the functions Fl and F2 are that 

I (i) Fl and F2 are bounded, 

(ii) 1: Fl(<) d< and 1>2([) d[ are bounded for all a and b, } (6) 

(iii) dFl/dt; and dFJd[ are bounded. I 
These conditions ensure that the leftward- and rightward-running waves are too 
weak and too localized to interact with each other at  this order of approximation; 
however, each of thewave sets has a long time to interactwithitself and an evolu- 
tion equation is obtained for each of the wave sets, The dimensional equation for 
the rightward-running waxes is 

9t + (ghP9, + W)* 99z + +h2(gh)*9,,, = 0. (7) 

More convenient variables for describing the rightward-running waves are 

In  terms of these variables ( 7 )  becomes 

19-2 
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which is (1); a similar equation can also be found for the set of leftward-running 
waves. Note that, when the initial wave sets satisfy the conditions on the initial 
data given by ( 2 )  and (3),  then a fortiori the conditions (6) are satisfied. 

The asymptotic solution of (1)  was discussed in part 1 of this study. In the 
present paper the following features of the asymptotic solution are compared 
with experimental results. 

(i) An arbitrary rightward-running disturbance which initially satisfies (2) 
and (3) evolves into a finite number of permanent waves (solitons) and a dis- 
persive wave train which oscillates about the still water level. 

(ii) When the net volume Y per unit width of the disturbance is finite and 
positive, i.e., 

Y =la -a f ( r ;  o)dr  > 0,  (9) 

a t  least one soliton emerges. Each soliton is a positive permanent wave whose 
velocity of propagation (relative to (gh)+) is proportional to its amplitude. The 
maximum amplitude of the leading soliton is 2 I h 1, where 

This amplitude cannot exceed 2f0, where f o  = max f ( r ;  0). When the solitons are 

well separated the local shape of each soliton is given by 
T 

f = 2 \A \  sech2(lhl~ ( r  - ro- 4 Ihj 7)). (11) 

(iii) The number N of solitons that evolve during propagation can be deter- 
mined from the initial data by counting the negative real eigenvalues of the 
problem 

(12) I d2$/dr2 + [ A  +f(r ;  O)] $ = 0, 

$ + O  as Irl-fco. 

Simple bounds on N for various initial data were discussed in part 1. When the 
initial data vanish outside a finite interval (say f ( r ;  0) E 0 for r < rl and 
r > r2,  where rl < r2)  as is the case for the experiments to be examined in this 
study, N can be computed exactly by integrating the equation 

with 

for r > r,,, and counting the zeros of q5. The function has N simple zeros, all at  
finite r .  

(iv) When f ( r ;  0) < 0 no solitons emerge and the asymptotic solution consists 
only of the dispersive train of oscillatory waves (tail). After its development this 
wave train can be described as slowly varying, with the wavenumber increasing 
from lc = 0 near the leading region of the advancing wave train to higher values 
towards the rear. The local group velocity of the wave train, relative to (gh)B, is 
negative (- 31c2); hence, the whole tail will travel more slowly than the slowest 
soliton. The maximum amplitude of the waves in the tail decays algebraically 
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as the waves disperse. Unfortunately, the predicted decay rates of the tail (see, 
for example, Ablowitz & Newel1 1973) cannot be tested in the following experi- 
ments owing to the presence of viscous energy losses. 

(v) Two other important classes of initial data which are not described 
above are 

(I) jm f(r; 0)dr  < 0, f(r; 0) 4 o for all r 

and (11) 1" f(r; 0) = 0, (15) 

(14) 
-a 

-m  

i.e. in case I the net volume per unit width in the initial data is negative but 
positive waves are present and in case I1 the net volume per unit width in the 
initial data is zero. Experimental evidence will be presented for these cases which 
indicates that the evolution of solitons depends on the detailed structure of the 
initial data. (Recall that the existence of solitons is guaranteed when 

f a  f(r; 0) dr > o 

regardless of the exact structure of f(r; 0) :  only the number and amplitudes of 
the solitons depend on f(r; O ) . )  

(vi) After a sufficiently long time, the solitons and the oscillatory tail separate. 
Then the solitons may continue to interact among themselves, but the entire 
wave appears as a linear superposition of the tail and the set of solitons, even 
though (1) is nonlinear. 

(vii) The horizontal position of the centroid of a wave system in the travelling 
co-ordinate system is given by 

-a  

Benjamin & Mahony (1971) have shown for the complete water-wave problem 
(8 arbitrary) that the velocity axla7 of the centroid remains constant during 
propagation in the absence of viscous stresses. Using the following quantities 
which are conserved by the KdV equation (see Miura, Gardner & Kruskal 1968), 

i t  follows that the constant velocity of the centroid is given by 

Hence, the centroid velocity (relative to (gh)*) is positive or negative depending 
on whether the net volume per unit width of the initial wave is positive or 
negative. 
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FIGURE 2 .  Schematic drawing of the wave generator. 

3. Wave generation and experimental equipment 
A series of laboratory experiments was conducted using a wave tank 103.8 ft 

(31.6m) long, 2ft (61 cm) deep and 154in. (39.4cm) wide; the vertical side walls 
of the tank were constructed of glass throughout. As shown schematically in 
figure 2, the wave generator consisted of a rectangular piston located in the tank 
bed adjacent to the upst'ream end wall of the wave tank which could be displaced 
vertically either up or down. The piston spanned the tank width and had a 
length b in the direction of wave propagation which could be varied. For the 
experiments discussed herein, lengths b = 61 em and b = 30.5 cm were used. 
The time-displacement history of the piston, denoted by [ ( t ) ,  was prescribed and 
controlled by an electro-hydraulic-servo system (cf. Hammack 1972 or 1973). 
A rubber seal was attached around the bottom edge of the piston in order to 
confine the fluid domain to the region above the wave maker. 

For many of the experiments discussed herein, the piston moved monotonically 
from its initial position (level with the fixed bed of the wave tank) to a final 
elevation c0 (see figure 2). The fluid was quiescent prior to the bed motion; hence, 
the net volume V per unit width in the generated wave system was bc,,. The 
detailed time-displacement histories of the bed motion will not be discussed since 
this study is primarily concerned with the propagation of the waves rather than 
their generation. (Typical bed motions used have been described by Hammack 
(1973).) In  addition to the monotonic bed motions, experiments were conducted 
in which the piston oscillated through one or more cycles before stopping either 
a,t the initial bed position (V  = 0) or at a position of permanent displacement 
( V  + 0). These experiments were used to investigate the asymptotic behaviour 
of initial wave data satisfying (14) or (15). It should be noted that the upstream 
end wall of the wave tank adjacent to the wave maker is a plane of symmetry for 
these wave motions. Hence, the length b actually represents the half-length of 
a hypothetical piston occupying the region - b < x < b, the waves propagating 
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out of the generation region in the direction of increasing x being the rightward- 
running set that would be generated by a piston symmetric about x = 0 with 
a length 2b. 

Wave measurements were made during each experiment at four positions 
using parallel-wire resistance gauges and an oscillograph recorder. In  the experi- 
ments to be discussed the undisturbed fluid depth was h = 5 cm, and waves were 
measured at (x-b) /h  = 0, (x-b) /h  = 20, ( x - b ) / h  = 180 or 200 and at 
(x - b ) / h  = 400. It should be emphasized that this method of wave measurement 
yielded a temporal record of the water surface displacement at a fixed position xo 
rather than a spatial description of the wave structure at a fixed time to, which is 
required for a direct comparison with the theory presented in $ 2. (Quantitative 
spatial measurements of waves a t  a fixed time are difficult to perform accurately 
for the long waves of moderate amplitude considered in this study.) However, 
the temporal wave structure measured at a fixed position xo should differ from 
the spatial wave structure measured a t  a fixed time to = xo/(gh)* by quantities 
O ( E ) ,  i.e. no significant evolution of the wave occurs during a temporal measure- 
ment whose duration is small compared with (h/g)*/e. This follows from the 
assumptions, stated in $ 2 ,  required to derive (1)  as a model for this problem. 
Thus, the choice of measurements in the experimental programme limits the 
range of E for which comparisons with theory are meaningful. 

It should also be noted that an essential requirement for relating these 
temporal measurements to spatial wave profiles is that the recorded surface 
motions be the result of the passage of a free wave as implied in 5 2. This require- 
ment is not satisfied by measurements in the fluid domain directly above the 
piston (x < b ) ,  where changing elevations of the water surface are a combination 
of both free and forced wave motions. For this reason, wave records identified 
herein as being recorded a t  (x - b ) / h  = 0 were actually made slightly downstream 
of the piston. 

4. Experimental results 
As indicated in $ 1, the purpose of this study is to compare experimental and 

theoretical results for wave evolution over a time scale sufficiently large for the 
asymptotic features of the wave system to develop. An important concept in the 
use of experimental data for this comparison is that of a sorting time t,, which is 
defined as the time required for a set of ordered solitons, if present, to evolve 
from the initial data. The time for this evolution to occur can be estimated by 
considering for simplicity an initially positive and rightward-running wave satis- 
fying (3) with a maximum amplitude vo and an effective length 1. The amplitude 
of the largest soliton which can evolve from these initial data cannot exceed 2v0; 
hence, an upper bound €or the dimensional speed of this leading soliton is 
(gh)* (1 + qo/h). A lower bound for the speed of the smallest soliton evolving from 
these initial data is (gh)*; hence, these two solitons move relative to each other 
(ignoring phase shifts) with a maximum speed s = (gh)i ( ~ ~ / h ) .  The initial data 
are expected to sort themselves into an ordered set of solitons in the time t, 
required for the largest and smallest solitons to travel a distance 1 relative 
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to each other; hence, the approximate magnitude of the sorting time is given 

Since the sorting time given by (18) has been obtained by ignoring phase shifts, 
it should be most applicable when the number of solitons evolving from the 
initial data is small, which is the case for the experiments discussed herein. (It 
should also be noted that the sorting time given by ( 18) is implied by Whitham’s 
(1965) method of averaging. To see this consider as initial data for (1) a slowly 
varying wave train whose amplitude varies from a maximum q0 to zero over an 
effective length I .  The small parameter 6 required for Whitham’s theory is the 
spatial rate of modulation of the amplitude, i.e. S N roll < 1. The theory then 
describes the evolution of such a wave train for a time O(S-l), which is consistent 
with (18).) It is more convenient in the present study to use a sorting distance d, 
to determine the approximate distance required for solitons to evolve from the 
initial data, This distance is given by 

d, = (gh)*t, or ds/h = (y0/Z)-l = O(e-8). 

It should be emphasized that this calculation is only expected to provide an 
order-of-magnitude accuracy for the sorting distance. In  the experiments which 
follow, a sorting distance has been calculated for each set of initial data in order 
to determine whet’her the available test section of the wave tank is sufficiently 
long for the asymptotic features of the solution to  be distinguished. I n  the com- 
putation of the sorting distance the length 1 has been chosen as the interval over 
which the initial data are non-zero while yo is taken as the absolute value of the 
maximum amplitude which occurs in the initial data. Experiments for which d, 
is much greater than the effective tank length have been omitted from 
consideration. 

W 

4.1. Initial data satisfying! f(r; 0 )  dr > 0 

Four experiments are presented in order to  examine the asymptotic features 
of wave evolution when the net volume V per unit width of the initial wave is 
positive. Figure 3 shows a series of measured wave profiles resulting from a 
monotonic uplift of the piston to an elevation co = + 0.5 cm in a water depth of 
5 cm. Since the length b of the piston was 61 cm in this experiment, the volume 
in the generated wave system was V = 30.5cm3/cm (henceforth, values of the 
experimental parameters h, b and V will be noted in the figure captions only). 
The normalized wave amplitude r /h  (or 2 j f )  is shown in figure 3 as a function of 
the non-dimensional time t(g/h)+ - (x- b)/h (or r,, - r,  where ro = b/h) .  The wave 
traces are presented in this manner to emphasize that they are in fact temporal 
measurements a t  a fixed spatial location which are subject to an error O(s)  when 
interpreted as spatial records a t  a fixed time (see $ 3 ) .  (Unfortunately, a 
rightward-running wave system necessarily appears to  be running to the left 
when presented in this manner since the spatial co-ordinate (x or r )  increases to 
the left. Hence, the leading portion of an advancing wave train will always appear 
t o  the left in the figures.) 

-a 
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t(g/h)a-(x-b)/h = r , - r  

FIGURE 3. Experimental wave systems: h = 5 em, b = 61 em, T.' = 30.5 cm3/em, N = 3, 
ds/h = 700. -, measured profiles ; 0 ,  soliton profiles computed using (1 1) ; 0 ,  location 
of centroid. (a) ( x - b ) / h  = 0. (b )  ( x - b ) / h  = 20. ( c )  (a-b)/h = 180. (d )  (x -b) /h  = 400. 

The initial wave at (x - b)/h = 0 in figure 3 is approximately a square wave 
(similar to the permanent deformation of the bed in the generation region) whose 
amplitude is positive. Based on the maximum amplitude and the length of these 
initial data (ignoring the small oscillations trailing the primary wave) the sorting 
distance is found to be approximately 700 water depths. Since only 400 water 
depths are available for observation in the test section of the wave tank, the 
asymptotic features of the evolving wave train are not expected to develop fully 
during observation. However, as will be shown, the asymptotic features can be 
distinguished with sufficient accuracy to warrant examination. 

The wave system in figure 3 appears to sort itself into three positive waves 
(solitons), which are identified by separate crests (local maxima) and are labelled 
1 , 2  and 3 in the wave traces a t  the last two stations of measurement. These three 
waves are ordered by amplitude and are followed by a small amplitude train of 
oscillatory waves which spreads to the right during propagation; hence, the 
group velocity of these oscillatory waves is negative relative to (gh)*. (In the 
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co-ordinate system used, a point moves to the left or right in succeeding measure- 
ments depending on whether its velocity is greater than or less than (gh)l, 
respectively.) During propagation between the last two stations of measurement, 
the three primary waves separate with the largest wave, wave 1, travelling at a 
velocity slightly greater than (gh)*. In order to examine the shape of the evolving 
waves, profiles of two solitons as defined by ( I  1)  have been superposed on the two 
leading waves a t  the last station of observation in figure 3. These exact profiles 
have been computed from (1 1) using the maximum amplitude of the measured 
waves to determine the magnitude of I hi, which appears in this equation. The 
exact profiles are not extended into the regions of the two leading waves where 
interaction with surrounding wave structure is occurring. Comparison of the 
theoretical profiles with the measured waves clearly indicates that the two 
leading waves have attained the shape of solitons near their crests. (A similar 
statement cannot be conclusively made for wave 3, which is still strongly inter- 
acting with the surrounding waves a t  the last station of observation.) Further 
evidence that the three primary waves a t  the last station of observation are indeed 
solitons is provided by numerically integrating (13) using the wave profile a t  
(x- b)/h = 0 as the potentialf(r; 0). Computation of the total number of solitons 
expected to evolve yields N = 3, which agrees with the observed pattern of 
evolution. 

Three features of t'he observed evolution in figure 3 are not in general agree- 
ment with the theoretical model; each of these features can be attributed to 
viscous effects in the experiments. First, the observed speeds of the last tw-o 
solitons do not exceed (gh)fr. Second, the position of the centroid (computed by 
numerically integrating the data on each wave record a t  successive stations of 
measurement) indicates that  the centroid velocity is not constant and is less than 
(gh)&. Since the net wave volume for these initial data is positive, the centroid 
velocity should exceed (gh)*. These discrepancies in centroid and soliton propaga- 
tion speeds are probably due to the presence of viscous stresses around the wetted 
perimeter of the wave-tank cross-section. The third feature of observed wave 
evolution which differs from the theoretical model is the reduction in soliton 
amplitude after separation and during propagation. This phenomenon will be 
discussed in more detail in $4.4 and is a result of energy losses in the viscous 
boundary layers which develop around the boundaries of the fluid domain during 
wave propagation. Energy losses as well 8s boundary stresses are not modelled 
by the KdV equation. 

A second example of wave evolution resulting from a monotonic uplift of the 
bed in the generation region is shown in figure 4. The evolution of this particular 
wave system is interesting since the initial data a t  ( ~ - b ) / h  = 0 are closely 
approximated over most of the profile by 

f = $a sech2 P(ro - r ) ,  

where ro - r = t(g/h)* since (x - b)/h = 0, f = $q/h, a = 0.082 and p = 0-069. (The 
profile (20) is shown superposed on the measured initial data in figure 4.) The 
wave profile given by (20) is of the same form as the soliton solution given by ( I  I )  
except that the wave amplitude $a and length p-' are improperly relat'ed, i.e. 
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t (g /h) , -  ( X - b ) / h  = r,-r 

FIGURE 4. Experimental wave systems: h = 5 cm, b = 61 cm, V = 61 cms/cm, N = 4, 
d,/h = 680. - , measured profiles; 0 ,  soliton profiles computed using (11) ; -+-, 
f = 0.12 sech2 {0.069(r0-r)}; 0 ,  location of centroid. (a) ( x - b ) / h  = 0. (b )  ( x - b ) / h  = 20. 
(c) (x-b)fh = 180. ( d )  (z-bffh = 400. 

p2 =/= $a. During propagation the initial wave evolves away from this sech2 
profile. After 180 depths of propagation two local maxima (crests) are distinguish- 
able and are labelled waves 1 and 2. At the last station of observation four local 
maxima are observed; the leading two waves clearly resemble solitons near their 
crests as indicated by comparison with exact soliton profiles computed from (1 I) 
which are shown superposed on the experimental measurements at this station. 
(Equation (11) has again been plotted using the maximum amplitude of the 
measured waves to  determine the magnitude of I hl ; profiles are not extended into 
regions of interaction of the two waves.) The sorting distance for the initial wave 
in figure 4 is about 680 water depths; hence, the solitons in the initial data are 
expected still to be localized at (x- b)/h = 400 and all of the solitons may not 
be identifiable. Computing the number of expected solitons by numerically 
integrating (13) using the initial data of figure 4 as the potential yields N = 4, 
which does agree with the observed behaviour a t  the last station of observation. 
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e ( g / h ) t - ( X - b ) / i i  = r,-r 

FIGURE 5. Experimental wave systems: h = 5 em, b = 30.5 em, V = 30.5 cma/cm, N = 3, 
d J h  = 260. -, measured profiles; 0 ,  soliton profiles computed using (11) ; ---, hypo- 
thetical position of the leading portion of the tail; @, location of centroid. (a) (z - b ) / h  = 0. 
(b )  (z-b) /h  = 20. (c) (z-b)/h = 200. (d) ( ~ - b ) / h  = 400. 

Note that the velocity of the centroid shown in figure 4 is greater than (gh)& 
between the first and third stations of measurement but is slightly less than (gh)t 
between the last two stations. 

I n  order to  examine the sufficiency of the requirement that the net wave 
volume be positive for solitons to evolve, an oscillatory bed motion was used to 
generate an initial wave system more complicated than those presented in 
figures 3 and 4. The resulting waves are shown in figure 5. The initial data a t  
(x - b)/h = 0 consist of a negative wave followed by a larger positive wave. After 
only twenty depths of propagation the large positive wave has separated into 
three separate crests, which have been labelled. The leading negative wave at 
(x - b)/h = 20 has essentially remained the same except for a decrease in slope and 
a stretching of Lhe front face of this wave. (It is noteworthy that the amplitude of 
wave 1 after 20 depths of propagation is approximately twice that of the positive 
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FIGURE 6. Time-displacement histories of the wave generator and the resulting wave 
systems: h = 5 cm, b = 61 cm, V = 61 cms/cm. (a) Mean motion; (b ) ,  ( e )  mean motion 
with superposed oscillation. 0,  location of centroid. 

wave in the initial data.) During further propagation the three labelled waves 
appear to retain their integrity as they progress through the leading negative 
wave and emerge at the front of the wave train. At the last station of observation, 
waves 1 and 2 clearly resemble solitons near their crests as indicated by the 
comparison with exact profiles computed from (1 1) as previously described and 
superposed on the measured profile. The third wave is still interacting with the 
once-leading negative wave, and cannot be unmistakably identified as a soliton. 
The centroid velocity of this wave system does exceed (gh)t  throughout the range 
of observation; however, the velocity is not constant and decreases slightly 
during propagation. 

There has been some controversy in recent literature (Benjamin, Bona & 
Mahony 1972) as to whether the high frequency content that would exist in most 
realistic initial data could invalidate the KdV equation, which is derived as a 
model of the propagation of long waves. Consequently, experiments were 

0 
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conducted in which an oscillatory motion of the piston (‘dither ’) was superposed 
on a monotonic mean motion to determine the effect of short waves in the initial 
data on the asymptotic wave behaviour. The amplitude and frequency of the 
superposed dither were varied relative to  the amplitude and period of the mean 
motion. Resulting waves from three experiments are presented in figures 6 (a ) ,  (b )  
and ( c )  along with the time-displacement history g ( t )  of the bed motion. Figure 6 (a) 
shows the waves resulting from the monotonic mean motion alone. The initial 
wave consists essentially of a positive mound of water, which evolves into four 
separate waves after 400 depths of propagation. Computation of N from (13) 
using these initial wave data as the potential suggests that  four solitons should 
evolve; a sorting distance of approximately 460 water depths is found for these 
initial data. 

Figure 6 ( b )  shows the resulting waves when a dither with an amplitude and 
period half those of the mean motion of figure 6 (a) is superposed on the mean 
motion. The initial wave in figure 6 ( b )  contains oscillatory waves whose period 
and amplitude are proportional to those of the dither. These high frequency waves 
(relative to the frequency of the mean wave) are still evident after twenty depths 
of propagation. At the third station of observation the oscillatory waves trail 
behind the evolving solitons, whose structure is almost identical with that of the 
wave system in figure 6 (a )  a t  the equivalent measurement position. After 400 
depths of propagation four solitons are observed in figure 6 (b)  with amplitudes 
and spacing identical to  the results in figure 6 ( a ) ;  hence, the higher frequency 
waves in the initial data do not appear to have any permanent effect on the 
evolving solitons in this experiment. Further evidence of this insensitivity of the 
solitons to high frequency content of the initial data is also indicated by the 
computation of N for the initial data in figure 6 ( b )  ; again four solitons are calcu- 
lated to evolve asymptotically. 

The waves resulting when the period of the superposed dither is reduced to  
one tenth of the period of the mean motion while the relative amplitude of the 
dither is maintained a t  one half are presented in figure 6 ( c ) .  This bed motion 
generated a system of cross-waves (waves propagating laterally across the tank) 
in the generation region, which were recorded by the transducer a t  (x- b)/h = 0. 
The large amplitude oscillations in the measured profile at (x-b)/h = 0 which 
occur after the bed motion has ceased are cross-waves; hence, this wave system 
contains spurious information if used in the comparison with the theory for one- 
dimensional (longitudinal) wave propagation presented in $ 2 .  The recorded wave 
structure at  (x- b)/h = 20 does consist almost entirely of longitudinally propa- 
gating waves and can be considered as the initial data for the evolving waves at 
the remaining downstream positions. This initial wave system consists of a 
leading positive wave (apparently generated by the mean motion of the wave 
maker) followed by a dispersive train of high frequency waves which were gene- 
rated by the oscillations of the wave maker as well as the longitudinal pressure 
gradients created by the cross-waves. During further propagation these dis- 
persive waves are left behind by the evolving mean wave (note that the abscissa 
has been broken a t  (x- b)/h = 180 in order to show the largest trailing wave 
group). After 400 depths of propagation the evolving wave structure is almost 
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t(g/h) * - (z - b) /h  = r, - r 

FIGURE 7. Experimental wave systems: h = 5 cm, b = 61 cm, V = - 30.5 cm3/cm, N = 0, 
d8/h = 600. - , measured profiles; 0 ,  location of centroid. (a) (z-b)/h = 0. 
(b )  ( x -b ) /h  = 20. (c) (z-b)/h = 180. (d) ( ~ - b ) / h  = 400. 

identical to that observed in figures 6 (a)  and ( b ) ;  the dispersive wave train has 
decayed to such an extent at this position (as a combined result of viscous effects 
and frequency separation) that it is no longer measurable. Using the initial wave 
system at (x- b)/h = 20 in figure 6 (c) as the potential in (13), four solitons are 
again computed to evolve asymptotically just as observed. Hence, it appears that 
high frequency (or wavenumber) content in the initial data does not have any 
significant effect on the evolving solitons. 

m 

4.2. Initial data satisfying f ( r ;  0) dr < 0 
--a0 

In  order to demonstrate the primary features of the asymptotic solution when 
the net volume in the initial wave system is negative, results from two experi- 
ments are presented. Figure 7 shows the waves resulting from a monotonic down- 
throw of the piston. The initial wave a t  (.- b)/h = 0 is approximately a negative 
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square wave; the sorting distnrbance for these initial data is approximately 
600 water depths. 

No positive waves resembling solitons appear to develop in figure 7 during 
400 depths of propagation. Even though the sorting distance does exceed the 
range of observation, the results presented in 9 4.1 would appear to indicate that, 
if any solitons are present, their crests should be distinguishable at (x - b)/h = 400 
as they progress through the leading negative wave. The wave train that does 
develop from these initial data consists of a leading negative wave whose frontal 
slope decreases and elongates with time. It is in this region of the wave train that 
the local wavenumber approaches zero with increasing time as the characteristic 
wavelength, lcc k-1, grows (see Hammack (1973) for a detailed discussion of this 
behaviour). The increasing wavelength in this region also decreases the import- 
ance of frequency dispersion and nonlinear effects dominate the wave behaviour. 
Following a period of initial growth, the amplitude of the leading wave decays 
during further propagation. The leading negative wave is followed by a dispersive 
train of oscillatory waves whose amplitude and wavenumber are slowly modu- 
lated (k increasing toward the rear of the train). The group velocity of these 
oscillatory waves is less than (gh)J, and the waves spread behind the leading wave. 
This description of the evolving wave train in figure 7 agrees with the theoretical 
description of the dispersive train corresponding to the continuous spectrum 
presented in Q 2. 

It is suggested that the dispersive wave train evolving in figure 7 is charac- 
teristic for any initial data which satisfy (2) and (3) and have a non-zero contribu- 
tion from the continuous spectrum. Returning briefly to figure 5, the sets of 
waves recorded at the last two stations may each be viewed as a set of three well- 
separated solitons, superposed on an oscillatory tail which is similar to that in 
figure 7 .  In  these wave records, the first two solitons have separated from the tail, 
while the third soliton is distinguishable and is still climbing the front slope of 
the negative wave. The hypothetical position of this front slope on which i t  is 
suggested that the third soliton is climbing is indicated in figure 5. This super- 
position of a soliton on the front face of the tail can also be seenin figures 9 and 10. 
Hence, it appears that the evolution of the solitons and the tail do become 
independent, as the theory suggests. 

Further evidence relating to the suggested pattern of evolution for compli- 
cated waves in the initial data is presented in figure 8, where the initial wave 
system consists of a positive wave followed by a slightly larger negative wave 
( V < 0) .  In  this case the leading positive wave appears to evolve into two positive 
waves while the negative wave evolves in the same manner as presented in 
figure 7 .  Computations using these initial data as the potential in (13) indicate 
that one soliton should develop asymptotically; hence, i t  is anticipated that 
wave 2 would eventually disappear, as it appears to be doing between the last 
two stations of observation. It should be noted that the wave system a t  the last 
station of observation in figure 8 is so long that the entire train could not be 
measured before the reflected wave from the end of the wave tank returned to 
the point of measurement; hence, no centroid position could be determined a t  
this station. 
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FIGURE 8. Experimental wave systems: h = 5 em, b = 30.5 cm, V = - 30.5 cm3/cm, 
N = 1 ,  d,/h = 110. -, measured profiles; 0 ,  location of centroid. (a) (z-b)/h = 0. 
( b )  (x-b) /F,  = 20. (c) (x-b) /h  = 200. (d )  ( ~ - b ) / h  = 400. 

4.3. Initial data satisfying f ( r ;  0 )  dr = 0 s:, 
The theory presented in part I of this paper provided no insight into the asymp- 
totic wave behaviour when the net volume in the initial data is zero. Two experi- 
ments have been conducted in order to  investigate the asymptotic wave 
behaviour for two particular initial systems satisfying (15). Figure 9 shows the 
waves resulting when the wave maker is oscillated through one cycle about its 
initial position. Theinitial data essentially consist of two positive waves separated 
by a single negative wave. Application of (13) t o  these initial data indicate that 
three solitons should evolve. After 200 depths of propagation the leading positive 
wave in the initial data has evolved into one identifiable soliton (labelled 1) as 
indicated by a comparison with an exact soliton shape computed from (1 I)  for 
a soliton whose maximum amplitude equals the amplitude of the measured wave. 
The frontal. slope of the negative wave in the initial data has decreased during 
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FIGURE 9. Experiinental wave systems: E, = 5 cm, b = 30-5 cm, V = 0, N = 3, ds/h = 220. 
-, measured profiles; 0 ,  soliton profiles computed using (11).  (a) (x -b) /h  = 0. 
(b)  (x -b) /h  = 20. (c) (z-b) /h  = 200. (d) ( ~ - b ) / h  = 400. 

propagation while two positive waves (labelled 2 and 3) appear to evolve from the 
trailing positive wave in the initial data. These latter two waves appear to be 
propagating along the front face of the evolving negative wave. This pattern of 
evolution continues through the last station of observation, where wave 2 has 
almost reached the front of the negative wave system. It does appear that the 
amplitude of wave 2 is greater than that of wave 1 ; hence, the second wave would 
be expected to overtake, pass through and emerge in front of wave 1 during 
further propagation. The tail behind these solitons is well developed at the last 
station of measurement and is spreading behind the solitons with time. (No 
centroid position is computed for these wave systems since the net volume is zero.) 

Figure 10 shows the evolution of a second initial wave system for which the net 
volume is zero; this system consists of two primary negative waves separated by 
a larger positive wave. Application of ( 13) to these initial data suggests that two 
solitons should evolve. The large positive wave in the initial data separates into 
two positive waves after only twenty depths of propagation (neglecting the local 
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FIGURE 10. Experimental wave systems: h = 5cm, b = 30-5cm, V = 0, N = 2, 
d,/h = 230. -, measured profiles ; , soliton profiles computed using (1 1). (a) (z - b)/h = 0. 
(b )  ( ~ - b ) / h  = 20. (c) (a-b)/h = 200. (d )  ( ~ - b ) / h  = 400. 

maximum that occurs at the still-water level). At the third station of observation, 
wave 1 has already progressed to the front of the evolving wave train and clearly 
has the shape of a soliton as indicated by an exact soliton profile shown super- 
posed on the measured wave. The second labelled wave appears to be progressing 
along a front slope of a negative wave, which is similar to the behaviour exhibited 
by the wave systems in figures 9 and 5 ;  a tail is also developing in the trailing 
portion of the wave system. A t  the last station of observation in figure 10, the 
leading soliton has separated entirely from the trailing wave structure as the 
water level on each side of the wave crest merges with the still-water level. 
(A theoretical soliton profile is shown superposed on the measured leading 
soliton a t  this station.) The second wave, denoted by 2, is still progressing along 
the leading face of the negative wave preceding the oscillatory portion of the 
tail. 

The results presented in figures 9 and 10 for two particular initial wave systems 
in which the net volume is zero indicate that solitons evolve from the large 
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positive waves in the initial data, and progress to the front of the evolving wave 
train. The large negative waves in the initial data appear to coalesce into a tail 
(as the solitons emerge at the front of the wave system) which then evolves in the 
same manner as observed in figure 7. 

4.4. Comparison of leading-soliton amplitudes and N 
The experimental results presented in $4 4.1, 4.2 and 4.3 demonstrate the evolu- 
tion of solitons from various sets of initial data and the decay in amplitude of 
these solitons during propagation. This effect as well as the reduction in the 
centroid velocity of the evolving wave systems was mentioned briefly in 5 4.1 
and was attributed to energy losses and boundary stresses resulting from the 
presence of viscosity in the experiments. Since the KdV equation is an inviscid 
model of wave propagation, the effects of viscosity on the experimental wave 
amplitudes must be estimated before quantitative comparisons with theory are 
meaningful. It is the objective of this sub-section to approximate the effects of 
viscosity on the amplitude of the leading soliton which evolves during an experi- 
ment and to compare the observed amplitude with the corrected theoretical 
amplitude found from (10) using the initial data as the potential, 

Keulegan (1948) derived a theoretical model for the damping of a solitary wave 
due to viscous dissipation in the boundary layers adjacent to the solid boundaries 
of a wave tank. For a single solitary wave with an initial amplitude yoi at x = 0 
in water of depth h and a tank of width W ,  Keulegan found that the maximum 
amplitude yo of the solitary wave at any downstream position x was approxi- 
mately given by 

h = @) [ 1 +e e)&]-*, 
where e = -  ll2 ( I + -  $) ($)&(;) 
and v is the kinematic fluid viscosity. Laboratory experiments have been con- 
ducted by several authors to test the validity of (21). Some of these results are 
summarized by French (1969)) who also includes data from his own experiments, 
which were conducted in the same wave tank as was used in the present study. 
The data of French agree well with (21), differing at  most by 6 yo; however, the 
range of 0 investigated by French (0 < 0.021) was smaller than the range 
(0 < 0.223) involved in the present study. The data of Ippen, Kulin & Raza 
( 1955) generally indicate that Keulegan’s expression predicts more amplitude 
decay than is actually observed. Their results at a water depth of approximately 
6cm suggests that (21) predicts the amplitude decay to within 12% for 
roi/h ,< 0.5. (The range of B used by Ippen et al. cannot be determined from their 
presentation of their results; however, i t  does appear that their range of 0 
exceeded that of French.) The results of these authors indicate that (21) predicts 
the viscous decay of a solitary wave with acceptable accuracy. The waves con- 
sidered in this study are much more complex than individual solitary waves; 
however, for the waves generated by monotonic uplifts ofthe piston such as those 
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Predicted (non-decayed) amplitude 

FIGURE 11.  Comparison of theoretical [equations (10) and (21)] and measured amplitudes 
of the leading soliton a t  (2- b ) / h  = 400. Shaded area represents anticipated error range of 
equation (21). 

shown in figure 3 and figure 6 (a ) ,  the leading soliton rapidly develops a t  the front 
of the wave. This soliton is largely unaffected by the complexity of the rest of the 
wave system, and propagates into quiescent fluid as though it were an individual 
soliton. Hence, (21) will be used to estimate the viscous decay of the leading 
solitons (but no others) in the wave systems being considered. 

Theoretical and experimental results are presented in table I and summarized 
in figure 11 for sixteen experiments with a uniform water depth of 5 cm. The 
initial data in each experiment were generated by a monotonic uplift of the 
piston similar to  the bed motion presented in figure 6 (a) .  Hence, the initial wave 
systems for these experiments primarily consist of positive square waves similar 
to  those presented in figures 3 and 6 (a) .  The amplitude c0 of the bed motion and 
the total time t, of the bed displacement have been varied in order to vary the 
maximum amplitude and length of the initial data. The generation parameters 
c0 and t, for each experiment are shown in columns 2 and 3, respectively, of 
table 1.  The maximum amplitude E = lqol/h of the initial data and the expected 
sorting distance dJh are shown in columns 4 and 5 ,  respectively. (Note that the 
initial data in the last four experiments were chosen as the measured wave 
structure a t  (x - b)/h = 20; this procedure was necessary in order to ensure that 
the initial data contained no water surface motions other than those caused by 
the passage of a free wave.) The measured amplitude of the leading soliton after 
400 depths of propagation is shown in column 6. 

The theoretical amplitude of the leading soliton in the absence of viscous 
effects is computed from the initial data of each experiment using ( I  0 )  and is 
listed in column 7 of table I. I n  order to correct the theoretical amplitudes in 
column 7 for viscous effects, these amplitudes are taken as the initial (non- 
decayed) amplitudes qoi/h in Keulegan’s equation (21), which is then solved for 
qo/h using x/h = 400 (0 = 0.223) in the first twelve experiments and x /h  = 380 
(8  = 0.212) in the last four. The results of these computations are listed in 
column 8 and represent the theoretical amplitude of the leading soliton corrected 
for viscosity. This procedure for predicting amplitudes of leading solitons neces- 
sarily assumes (i) that  the dissipation of energy and the resulting decay in ampli- 
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tude of the leading soliton are not significantly influenced by its nonlinear inter- 
action with the rest of the wave; (ii) that the leading soliton has essentially 
completed its interaction with the rest of the wave after propagating 400 depths, 
so that the measured amplitude a t  this position truly represents the asymptotic 
wave structure; and (iii) that the error inherent in using temporal measurements 
to represent spatial data is negligible. The validity of the first assumption is 
unknown and this limitation must be remembered in interpreting the results. 
The validity of the second assumption is indicated by the computed sorting 
distance in column 5, which is less than 400 depths except for experiments 1, 2 
and 3; hence, this assumption does appear to be valid for most experiments. The 
validity of the third assumption is suggested by the magnitude of e appearing in 
column 4 of table 1 since the error incurred is O(e). For these experiments E ranges 
from 0.052 in experiment 1 to 0.436 in experiment 16; hence, the error involved 
in the third assumption is expected to increase (and possibly become appreciable) 
in the last experiments of table 1. 

The observed and the predicted amplitudes (columns 6 and 8, respectively) of 
the leading soliton for each experiment are compared in figure 11 ; the percentage 
error of the prediction for each experiment is shown in column 9 of table 1.  The 
predicted amplitudes in column 8 are less than the measured amplitudes in 
column 6 in all experiments, which is consistent with the previous results of 
Ippen et al. (1955). In  the light of their work, errors of approximately 12 % are 
anticipated as a result of the inaccuracy of ( 2  1). (An error band of this magnitude 
is shown in figure 11 .) The observed errors in column 9 are within this range for 
most of the experiments in which the ‘non-decayed’ soliton amplitudes predicted 
by the KdV theory alone, i.e. column 7 or the abscissa in figure 11, do not exceed 
0.25. (The non-decayed amplitude appears to be the best indicator in these 
experiments of the potential range of application of the KdV equation as a model 
of wave propagation in an inviscid fluid. A wave is not characterized by its 
measured amplitude a t  a particular location; this amplitude depends on the 
location, because of viscous effects. Nor is it  characterized by the initial amplitude 
e, as can be seen from table 1. Hence, the non-decayed amplitude is used in 
figure 11, even though it is not measured directly.) Even when these ‘non- 
decayed’ soliton amplitudes exceed half the still-water depth, discrepancies 
between theory and experiment never exceed about 20 yo. It is not clear from this 
study where the increasing errors arise for experiments in which the soliton 
amplitudes predicted by the KdV theory exceed 0.25; possible sources are 
(i) a gradual breakdown of the KdV theory for large soliton amplitudes, (ii) the 
use of temporal wave records to represent spatial data, or (iii) a combination of 
these effects (assuming that the viscosity correction is in fact valid to within 12 yo 
as suggested by aforementioned publications). In  any case, the suggested algo- 
rithm for predicting leading-soliton amplitudes in a viscous fluid is surprisingly 
accurate over the full range of initial data investigated. 

The last two columns of table 1 indicate the number of observed solitons after 
400 depths of propagation and the theoretical number computed from the initial 
data by numerically integrating (13). As the number of solitons in the initial data 
increases it becomes exceedingly difficult to count their exact number a t  the last 
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station of observation owing to the small amplitudes of the solitons a t  the rear 
of the train. This difficulty is illustrated in column 10 of table 1 for the last nine 
experiments, where exact counts of AT were not possible. The theoretical results 
presented in column 11 agree exactly with the experimental counts in column 10 
where exact counts were possible and fall within the range of the count in the last 
nine experiments. 

It is worthwhile emphasizing in this discussion of soliton amplitudes that the 
experimental data indicate that the evolution of solitons from various sets of 
initial data does occur in a dissipative medium such as encounteredin a laboratory 
wave tank. The amplitude of each soliton decays during propagation in the dis- 
sipative medium but the shape of the soliton remains self-similar. This behaviour 
is demonstrated by the leading soliton in figures 9 and 10, where theoretical 
profiles based on (1 1) are shown superposed on the measured waves a t  different 
downstream locations. Hence, the time scale over which significant viscous 
effects occur in the laboratory is such that the wave has ample time t o  adjust and 
retain the proper sech2 profile for the changing wave amplitude. 

5. Conclusions 
Prom the experimental results presented in this study, the following con- 

clusions regarding the asymptotic behaviour of various sets of initial data 
propagating in a fluid of uniform depth can be made. 

(i) When the net volume in the initial wave system is positive, waves of stable 
form (solitons) evolve, ordered by amplitude, whose shape is given by (1 1); these 
solitons are followed by a dispersive train of oscillatory waves. The number of 
solitons and their amplitudes depend on the initial data. 

(ii) When the net volume in the initial wave system is negative, or zero, the 
evolution of solitons depends on the details of the initial data. If the initial data 
are non-positive everywhere, no solitons evolve. 

(iii) The number of solitons that evolve from the initial data can be predicted 
by determining the number of discrete eigenvalues of the associated scattering 
problem using the initial wave system as the potential. 

(iv) The dispersive train of oscillatory waves which evolves from most initial 
data can be described as slowly varying with the local wavenumber k, which 
increases towards the rear of the train from k = 0 near the front of the train. The 
group velocity of this tail is negative relative to (gh)h. 

(v) After a sufficiently long time, the solitons are not affected by the tail, and 
vice versa. 

(vi) High frequency content in the initial data has no permanent effect on the 
evolving solitons. 

(vii) The amplitude of the leading soliton after it has propagated 400 depths 
is predicted to within about 20 yo by (10) and (21) ,  over the entire range of initial 
data tested. If the ratio of the non-decayed amplitude predicted by (10) alone to 
the water depth does not exceed about 0.25 ,  computations using (10) and (21) 
agree with the measured amplitudes to within the apparent accuracy (12 yo) 
of (21). 
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(viii) The evolution of solitons is possible in a slightly dissipative fluid medium 
such as that encountered in a laboratory wave tank. The amplitude of each 
soliton slowly decreases during propagation; however, the shape of the soliton 
appears to have ample time to adjust to the changing amplitude so that the 
profile remains described by (11). 

(ix) A sorting distance as defined by (19) appears to be adequate in approxi- 
mating the distance of propagation required for the asymptotic development of 
initial data for which the number of evolving solitons is small. 

In the light of the above conclusions, the Korteweg-de Vries equation appears 
to provide an accurate model for determining the evolution from various sets of 
initial data of gravity waves of moderate amplitude propagating in one direction 
in a non-dissipative or slightly dissipative fluid of uniform depth. 
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